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Abstract

A finite-difference, three dimensional incompressible Navier-Stokes formulation

to calculate the flow through turbopump components is utilized. The solution method

is based on the pseudocompressibility approach and uses an implicit-upwind differenc-

ing scheme together with the Gauss-Seidel line relaxation method. Both steady and

unsteady flow calculations can be perfomed using the current algorithm. In this work,

the equations are solved in steadily rotating reference frames by using the steady-state

formulation in order to simulate the flow through a turbopump inducer. Eddy viscosity

is computed by using an algebraic mixing-length turbulence model. Numerical results

are compared with experimental measurements and a good agreement is found between

the two. Time-accurate calculations, such as impeller and diffusor interaction, will be

reported in future work.

Introduction

With the advent of supercomputer hardware as well as fast numerical meth-

ods, computational fluid dynamics (CFD) has become an essential part of aerospace

research and design. Numerical studies in incompressible flows show good progress

in parallel with computational studies in compressible flows. For example, the incom-

pressible flow solver developed by Kwak et al [1] was extensively used for simulating the

flow through space shuttle main engine power head components. The redesign of the

space shuttle main engine hot gas manifold, guided by the computations of Chang et

al. [2], illustrates the usefulness of CFD in aerospace research. Since the incompressible

Navier-Stokes formulation does not yield the pressure field explicitly from the equation

of state or through the continuity equation, numerical solution of the equations requires

special attention in order to satisfy the divergence-free constraint on the velocity field.

The most widely used methods which use primitive variables are t;ractionat-step and

pseudocompressibility techniques. In the fractional-step method, the auxiliary veloc-

ity field is solved by using the momentum equations. Then, a Poisson equation for

pressure is formed by taking the divergence of the momentum equations and by using

a divergence-free velocity field constraint. Solving the Poisson equation for pressure

efficiently in three-dimensional curvilinear coordinates is the most important feature of

the fractional step method. 3 One way to avoid the numerical difficulty originated by

the elliptic nature of the problem is to use a pseudocompressibility method. With the

pseudocompressibility method, the elliptic-parabolic type equations are transfi)rmed



into hyperbolic-parabolic type equations. Well establishedsolution algorithms devel-
oped for compressibleflowscan be utilized to solvethe resulting equations.

Steger and Kutler4 employed an alternating direction implicit scheme into
Chorin'ss pseudocompressibilitymethod. This formulation was extended to three-
dimensional generalizedcoordinatesby Kwak.1 Recently,a three-dimensional incom-
pressibleNavier-Stokessolver(INS3D-LU-SGS)using a lower-uppersymmetric-Gauss-
Seidelalgorithm wasdevelopedby Yoon and Kwak.* This algorithm is usedto calculate
the inducer flow of the SpaceShuttle Main Engineturbopump in order to demonstrate
the performance of the numerical method.7 Another effort is performed in Ref. 8 by
using upwind differencing and Gauss-Seidelline relaxation schemein order to have a
robust and fast convergingscheme(INS3D-UP). A time accurate formulation of this
algorithm is implementedfor incompressibleflows through artificial heart deviceswith
moving boundaries,s,l° In the present study, the steady-state formulation is used in
steadily rotating referenceframesin order to developa CFD procedure for simulating
the flow through turbopump componentsof a liquid rocket engine.

Computed Results

The flowfield through a turbopump inducer is solved as a benchmark problem in

order to validate the CFD procedure for turbomachinery applications. In this section

results obtained for the Rocketdyne inducer shown in Fig. 1 are presented. The inducer

geometry was developed and experimentally studied by the Rocketdyne Division of

Rockwell International. The design flow is 2236 GPM with a design speed of 3600

RPM. In the computational study, tip-leakage effects are included with a tip clearance

of 0.008 inches. The problem was nondimensionalized with a tip diameter of 6.0 inches

and the average inflow velocity of 2S.3 ft/sec. The Reynolds number for this calculation

was 191,800. The upstream section of the inducer was taken as a two tip-diameter-

long straight channel, as shown in Fig. 1. The bull-nose of the inducer was treated

as a rotating wall and the cavity section was neglected. However, this region can be

included by using an additional zone. An H-H grid topology with dimensions of 187

x 27 x 35 was used. A partial view of the surface grid is shown in Fig. 2. An H-type

surface grid was generated for each surface using an elliptic grid generator. The interior

region of the three-dimensional grid was filled using an algebraic solver coupled with

an elliptic smoother. In the straight channel, the grid was generated for one-sixth of

the cross-section of the tube. This grid was extended to the outflow section of the

inducer between the blades. Periodic boundary conditions were used at the end points

in the rotational direction. At inflow and outflow boundaries characteristic boundary

conditions were employed. At the inflow, v and w velocity components were specified as

zero and the total pressure was specified as constant. Axial velocity and static pressure

were calculated from the characteristic relation and the total pressure relation. At

the outflow, static pressure was specified and the velocity components were computed

from the characteristics propagating from the interior region. The flow was taken at

rest initially and the inducer was fully rotated impulsively. The solution was considered

converged when the maximum residual dropped at least fcmr orders of magnitude. This



was obtained in less than 500 iterations. Computer time required per grid point per

iteration was about 1.4 x 10 -4 sec.

Figure 3 illustrates the planes where the experimental measurements were taken

by Rocketdyne. Axial and tangential velocity components and the flow angle were

measured in planes A,B,C and D at various circular arcs from the hub to the tip region.

At each plane, the comparison between experimental measurements and numerical

results along three of the circular arcs is presented in this paper. A total velocity and

a flow angle are compared against experimental data. The total velocity has only a

tangential and an axial velocity components. The radial velocity component was not

measured in the experiment.

Figures 4 through 7 show relative total velocities and relative flow angles as

a function of circumferential angle in degrees in planes A, B, C, and D, respectively.

The circumferential angle increases from the suction side to the pressure side. The

dashed lines in these figures represent the experimental data and solid lines represent

the numerical results. The comparison of computations and experiment is generally

good all the way from the hub to tip region. The difference between experimental and

numerical data is about 5-8 % in velocity. In all planes, the hub and tip regions indicate

the biggest discrepancy. This may be a result of the relatively coarse grid used for the

boundary layer. In the computational study, the Baldwin-Lomax algebraic turbulence

model is used to determine the eddy viscosity. The comparison shows that the solution

algorithm does a god job with an algebraic turbulence model. The implementation of

the one equation model 11 of Baldwin and Barth is currently underway for the present

algorithm. The motivation for higher-order turbulence modeling is due to the compar-

isons obtained in Plane D, in which the wake region is not predicted accurately (Fig.

7). Another advantage of the one-equation model is that there is no need to define

a length-scale explicitly. Near the tip clearance region, the difference between experi-

mental measurements and numerical results is noticably larger than the error in other

regions. This is due to lack of grid resolution in the tip clearance region. In the grid

refinement study, the number of grid points in the tip clearance region was increased

from 4 points to 9 points. In the coarse grid computation, there is one overlapped

grid point in the rotational direction to ensure periodic boundary conditions. In the

fine grid, additional 3 zones were added in radial direction. The results with the one

equation model and the results from the grid refinement study will be published in

future.

Figure 8 shows the surface of the inducer colored by nondimensionalized pres-

sure. The pressure gradient across the blades due to the action of centrifugal force and

the pressure rise from inflow to outflow are illustrated. This pressure rise along the

inducer can also be seen in Fig. 9. Velocity vectors are plotted in the meridional plane

and the vectors are colored by the static pressure. The existing solution procedure can

be applied to the same configuration under off-design conditions. The massive sepa-

ration which may block tile fuel supply can be detected in the numerical study. This

is the future research area of the present study which can be used as a pre-design and

post-design engineering tool in challenging turbomachinery applications.



Summary

An efficient and robust solution procedure is implemented and validated for

three-dimensional turbopump applications. Numerical simulations of the flow through

the Rocketdyne inducer have been successfully carried out by using CFD techniques for

solving viscous incompressible Navier-Stokes equations with the source terms in steadily

rotating reference frames. The method of artificial compressibility with a higher-order

accurate upwind differencing and the Gauss-Seidel line relaxation scheme provide fast

convergence and robustness. Results in the form of relative total velocity and relative

flow angle in four planes are presented. Numerical results compare fairly well with

experimental data.
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COLOR PHOTOGRAPH

Figure 1: Rocketdyne turbopump inducer configuration.

Figure 2: Surface grid for Rocketdyne turbopump inducer.
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Figure 3: Schematic representation of the planes where experimental data is available.
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Figure 4: Comparison of relative total velocity and relative flow angle in Plane A.
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DOCHAN KWAK t, AND I-DEE CHANG t

ABSTRACT. The extension of computational fluid dynamics techniques to

artificial heart flow simulation is illustrated. Unsteady Navier-Stokes equa-

tions written in three-dimeusional generalized curvilinear coordinates are

solved iteratively at each physical time-step until the incompressibility con-

dition is satisfied. The solotion method is based upon the pseudocompress-

ibility approach and uses an implicit upwind differencing scheme together

with the Gauss-Seidel fine-relaxation method. The efficiency and robust-

ness of the time-accurate formulation of the numerical algorithm are tested

by computing the flow through model geometries. A channel flow with

a moving indentation is computed and validated with experimental mea-

surements and other numerical solutions. In order to handle the geomet-

ric complexity and the moving boundary problems, a zonal method and

an overlapped grid-embedding scheme are employed, respectively. Steady-

state solutions for the flow throufh a tilting-disk heart valve are compared

with experimental measurements; good agreement is obtained. The flow

computation during opening and closing of the valve is carried out to il-

lustrate the moving-boundary capability. Aided by experimental evidence,

the flow through an entire Penn State artificial heart model is computed.

1. Introduction

With the advent of supercomputer hardware, a.s well a-s fast numerical meth-

ods, researchers in the field of computational fluid dynamics (CFD) tackle more

complicated problems than ever before. With these new capabilities, CFD has

become an essential part of aerospace research and design. For example, the in-

compressible flow solver developed by Kwak et al. (Ref. 1) was extensively used
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State electric artificial heart, can be well defined (Ref. 9). Therefore, the present

study is focused on the fluid problem with prescribed body motion.

Underwood and Mueller obtained the flow characteristics for the Kay-Shiley

disk-type valve by using the stream function-vorticity formulation (Ref. 10).

Their results showed agreement with experimental data up to a Reynolds number

of 600. Idelsohn et ah modeled the flow through the Kay-Shiley caged disk,

Start-Edwards caged ball, and Bjork-Shiley tilting-disk valves and compared

their performance (Ref. 11). Turbulent flow through trileaflet aortic heart valves

was simulated by Stevenson et ah (Ref. 12). Most numerical studies assumed

that the flow through the heart valve was two-dimensionah Additionally, the

valve opening and closing motions were neglected; only the flow through a fixed

valve position was studied. In reality, the geometry is three-dimensional, and

the flow through heart valves involves moving boundaries.

In our present study we propose the development of a computational pro-

cedure simulating steady and unsteady three-dimensional flows through artifi-

cial hearts and heart valves with moving boundaries. In the next sections, the

method of solution is summarized followed by a demonstration of how this CFD

procedure can be used for probing the flow through artificial heart devices.

2. Method of solution

The flow through artificial heart devices is unsteady, viscous, and incompress-

ible. In the present study, the non-Newtonian nature of the blood is neglected,

and the flow is described by the three-dimensional incompressible Navier-Stokes

equations. Numerical simulation of such flows is a very challenging problem in

computational fluid dynamics. In addition to the geometric complexity, obtain-

ing time-dependent solutions of the incompressible Navier-Stokes equations with

moving boundaries poses many difficult numerical problems.

Because the pressure and velocity fields are not directly coupled owing to

the lack of a pressure term in the continuity equation, numerical solution of

the incompressible Navier-Stokes equations requires special attention in order

to satisfy the divergence-free constraint on the velocity field. The most widely

used methods that use primitive variables are fractional-step and pseudocom-

pressibility techniques. In the fractional-step method, the auxiliary velocity field

is solved by using the momentum equations. Then, a Poisson equation for pres-

sure is formed by taking the divergence of the momentum equations and by using

a divergence-free velocity field constraint. The efficient solution of the Poisson

equation for pressure in three-dimensional curvilinear coordinates is the most

important feature of the fractional-step method (Ref. 13). One way to avoid

the numerical difficulty originated by the elliptic nature of the problem is to use

a pseudocompressibility method. With the pseudocompressibility method, the

elliptic-parabolic-type equations are transformed into hyperbolic-parabolic-type

equations. Well-established solution algorithms developed for compressible flows

can then be utilized to solve the resulting equations.
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In thepresentstudy,thepseudocompressibilityapproachisusedandthetime-
accuracyisattainedby iteratingin pseudo-timeuntil thedivergenceof velocity
isdriventowardzeroto withinaspecifiedtolerance.Here,thetime-derivatives
in themomentumequationsaredifferencedbyusingasecond-order,three-point,
backward-differenceformula.Thenumericalmethodusesasecond-ordercentral-
differencefor viscoustermsanda higher-orderflux-differencesplittingfor the
convectiveterms.Theresultingmatrixequationissolvediterativelybyusinga
nonfactoredline-relaxationscheme,whichmaintainsstabilityandallowsalarge
pseudo-time-stepto betaken.At eachsweepdirection,a tridiagonalmatrixis
formed,andoff-linetermsof thematrixequationaremovedto theright-hand
sideof theequation.Detailsof thegoverningequationsandnumericalmethod
aregivenin References14and15.

Oneofthebiggestdifficultiesin thesimulationofflowsin complicatedthree-
dimensionalconfigurationsis thediscretizationof thephysicaldomain.The
problembecomesmoresevereif onebodyin thedomainofinterestmovesrela-
tivetoanotherone,asisseenin thetiltingdiskvalveandthePennStateartificial
heartgeometries.Theuseofazonalapproachisapracticalsolutionif thegrids
arestationary.Formoregeneralapplications,a chimeragrid-embeddingtech-
niqueprovidesagreaterflexibilityforthegridmotion(Ref.16).Thistechnique
is employedfor flowcomputationsthrougha tilting diskvalveandthePenn
Stateartificialheartmodel.

3. Computed results

One of the goals of this study is to simulate the flow through a realistic model

of an artificial heart. Since the geometry and the flow physics are complicated,

the computational procedure is validated by solving several simpler problems

which characterize the flow in various parts of an artificial heart. As a first

step, an idealized two-dimensional pump model was chosen to demonstrate the

capability of the time-accurate formulation under a moving grid-condition. The

geometry of this model and the computed results are presented in Reference 14.

Channel flow with an identical wall, the flow through a tilting-disk heart valve,

and the flow through the Penn State artificial heart model are included in this
section.

3.1 Channel flow with a moving indentation.

Channel flow with an asymmetric oscillating indentation was experimentally

studied by Pedley and Stephanoff and was numerically simulated by Ralph and

Pedley (Ref. 1S). In the experiment, the channel was was rigid everywhere except

for the indentation, which is made of a thick rubber membrane. The experiment

shows that flow is two-dimensional near the midplane, and so the computation
is done in two dimensions.

Figure 1 illustrates the instantaneous streamlines plotted at several nondimen-

sional times for Reynolds number Re = 600 and for Strouhal number St = 0.057.
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TheReynoldsnumberisbasedonthechannelheighta, and on the average ve-

locity at the entrance of the channel U. The Strouhal number is defined as

St = af/U, where f is the oscillation frequency. At the beginning of the cycle,

the flow downstream of the indentation is parallel to the channel walls. A single

eddy is formed at the sloping wall of the indentation during the first half of the

cycle. The streamlines at the core flow are lifted slightly upward as shown in

Figure la. This is the beginning of the wavy flow patterns of the core flow.

The formation of a second separated eddy on the opposite wall can be seen in

Figure lb. In later stages, the double row of eddies along the lower and upper

wall of the channel is observed. At the end of the cycle, the vortices are swept

downstream (Fig. lg), and the residual vortices are not strong enough to affect

the next cycle. In fact, the flow pattern of the first and second cycles are quite

similar. Consequently, the flow is assumed to be periodic in time, even at the

first cycle. Another interesting phenomenon observed in the present study, as

well as in the experimental and other numerical studies, is the eddy-doubling

which can be seen in Figures lc through le. It occurred in the second, third,

and fourth vortices from the indentation. In eddy-doubling, a single eddy splits

into two rotating eddies.

The time-evolution of the centers of the vortices is compared with experimen-

tal and other numerical findings. The first four vortices are labeled vortices A,

B, C, and D, and are shown in Figure 2b. The distance between the indenta-

tion wall and the center of these vortices is measured from the instantaneous

streamlines and plotted versus time in Figure 2a. The dashed lines represent

the present computations. The solid lines denote computational results from

the fractional-step approach implemented by Rosenfeld (Ref. 19). Dotted lines

are numerical results of stream-function vorticity formulations from Ralph and

Redley (Ref. 18). Experimental measurements by Pedley and Stephanoff (Ref.

17) are represented by square symbols. The agreement between the numerical

and experimental measurements is fairly good. There is a discrepancy between

the numerical results and experimental measurements about the location of the

vortex A. The present results and Rosenfeld's computations predict the location

of vortex A to be 0.4 units closer to the indentation than the experimental find-

ings. However, the locations of Lhe remaining vortices are correctly predicted, if

the distance is measured from the center of the vortex A. This underprediction

of the separation length of vortex A is thought to be caused by an inaccurate

description of the indentation wall shape. In the present study and in Rosen-

feld's study the same grid and the same wall shape were used. Even though

tile solution algorithms of the two computational studies are completely differ-

ent, the agreement between the numerical results is good. For these reasons,

only the locations of vortices B, C, and D are compared with the experimental

measurements.

3.2 Flow through tilting disk valve.

The problem of flow through the tilting-disk valve was chosen to develop and
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validate a procedure that will be used for the valve region of the Penn State

artificial heart. In the Bjork-Shiley tilting-disk heart valve, the tilting disk is

placed in front of the sinus region of the human aorta. The aortic root has three

sinuses about 120 o apart. The tilting-disk valve model used in this computation

is simplified by assuming that the sinus region of the aorta has a circular cross

section. The cage and struts which hold the free-floating disk inside of the sewing

ring are not included in the geometry. It is also assumed that the walls have no

elastic deformation. The channel length is taken to be five aorta diameters long.

The computational geometry used in these unsteady flow computations is given

in Figure 3. The disk motion is illustrated by showing three different positions

of the disk, at angles of 75 °, 50 °, and 30 °, as measured from the centerline of the

aorta. The tilting disk is allowed to rotate about the horizontal axis, which is

1/6 of a disk diameter below the center of the disk. Because of this asymmetric

disk orientation, the flow is three dimensional.

The chimera grid-embedding technique, which has been successfully used for

external flow problems, has been employed by using two overlapped grids, as

shown in Figure 4. Grid 1 occupies the whole region in the aorta from entrance

to exit, and remains stationary. Grid 2 wraps around the tilting disk, and moves

with the disk. In the chimera grid-embedding technique, grid points that lie

within the disk geometry and outside the channel grid are excluded from the

solution process. These excluded points are called hole points, and the immediate

neighbors of the hole points are called fringe points. The information is passed

from one grid to another via fringe and grid boundary points by interpolating the

dependent variables. Tri-linear interpolation is used in the present computations.

In order to distinguish the hole and fringe points from regular computational

points, an IBLANK array is used in the flow solver. For hole, grid boundary,

and fringe points, IBLANK is set to zero; otherwise it is set to one. In order

to exclude the hole and grid boundary points from the solution procedure, the

coefficients of the system of algebraic equations and the right-hand-side terms are

multiplied by the IBLANK value. If the grid point is a hole, an outer boundary,

or a fringe point, the value of (1 - IBLANK) is added to the main diagonal of

the matrix equation.

Presented here are the results of steady flow with a fixed disk angle and

unsteady flow with the disk motion in the configuration described above. The

problems are nondimensionalized by using the entrance diameter as a unit length,

and the average inflow velocity as the unit velocity. In order to reduce the

computational effort and memory size, the inflow and outflow boundaries are

placed a short distance from the region of interest relative to the boundaries used

in the experimental studies. In addition, the exact shape of the sinus region of

the aorta used in the experiments is not known. These discrepancies could lead

to slight differences between the present computations and experimental results.

Steady-state calculations for the 300 disk orientation have been carried out for

Reynolds numbers in the range of 2,000 to 6,000, for which experimental data
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areavailable.The Reynoldsnumberis basedon thediameterandthemean
velocityat theentranceof thechannel.A mixing-lengthalgebraicturbulence
model,whichis usedfor incompressibleflowthroughthespaceshuttlemain-
engineturnaroundduct(Ref.2), is utilized. Figure 5 shows the pressure drop

across the Bjork-Shiley tilting-disk valve at different flow rates of physiological

interest. The computed and measured axial velocity profiles at 42 mm down-

stream from the disk are shown in Figure 6. Axial velocity profiles are plotted

in the horizontal plane through the center of the channel. The numerical results

are shown with dots, and the experimental results are shown with triangles. The

numerical results compare favorably with the experimental measurements (Ref.

3). The largest discrepancy is seen near the walls, where the boundary layer

is overestimated by the calculation. Figure 7 shows the velocity vectors at five

longitudinal stations. The flow, which is directed to the upper part of the aorta,

generates vortices in the sinus region of the aorta and a large separated region

along the lower wall of the aorta. Since separated-flow and low-flow regions have

the potential to form thrombi, clotting may occur on the upper sinus region and

the lower wall of the aorta. Figliola and Mueller also present mean velocity pro-

files, which show similar flow characteristics to those indicated by computational

study, at several locations (Ref. 5). They computed the shear stress from the

measured velocity field and observed that the maximum shear occurs at the top

wall downstream of the sinus region of the aorta. This is in agreement with the

velocity plot shown in Figure 7, in which there are large velocity components

just off the wail in that location. Particle traces in Figure 8 indicate that the

flow does not separate adjacent to the tilting disk. The tilting disk separates the

flow into a major flow region, which is along the upper wall of the tube, and a

minor flow region, which is along the lower wall of the tube. Separation, reverse

flow, and swirling motion mostly occur in the minor flow region.

Figure 9 shows vorticity magnitude contours in the surface of the tube, outflow

surface, and inflow surface of the disk, respectively. It is assumed that maximum

vorticity magnitudes indicate the regions of high shear. The sewing ring surface

and the edges of the disk are the regions where the vorticity magnitude is at a

maximum. The upper wall of the channel also has high vorticity magnitudes.

Unsteady-flow calculations have been carried out in order to demonstrate and

analyze the flow during opening and closing of the disks. For the present com-

putations, one cycle of valve opening and closing requires 70 physical time-steps.

During each time-step, subiterations are carried out until both the maximum di-

vergence of velocity and the maximum residual drop below 10-3 . The computing

time required for one cycle of the valve opening and closing is approximately 5

Cray-YMP hours. During the valve opening, inflow velocity is imposed at the

entrance of the channel The inflow velocity is chosen as a sine function in time.

The disk rotation is specified as a linear function in time. Since the forces acting

on the disk are known from the numerical solution, the disk rotation angle can be

determined. However, the disk rotation angle is limited. For large disk-rotation
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angle,someinformationmaybelostbetweenthegridswhenthegrid-embedding
techniqueisused.Inordertopreventtheinformationloss,themaximumallowed
disk-rotationangleat eachphysicaltime-stepis takento belessthan3°.

Figures10athrough10cillustratethevelocityvectorsonthelateralsymmetry
planeat t/T = 0.128, 0.257, and 0.385, respectively. The velocities are very high

in the region between the disk and the channel wall, as shown in Figure 10a.

During the disk opening, two vortices are formed at the upper and lower edges of

the disk. The flow starts to separate behind the disk and reattaches to the wall as

shown in Figure 10b. The stagnation region behind the disk moves downstream

as the disk rotates. Highly skewed velocity profiles are seen downstream from

the disk, as illustrated in Figure 10c. The growth of the vortices has also been

observed in the sinus region of the aorta while the flow opens the valve. Along

the lower wall a separation region is formed.

3.3 Artificial heart flow.

The Penn State artificial heart model is composed of a cylindrical chamber

with two tube extensions (Fig. 11). The inflow (mitral) and outflow (aortic)

tubes contain concave tilting disks, which open and close to act as valves. In the

computational model, tilting-disk mitral valve orientation in time was obtained

from the experimental data provided by Pennsylvania State University. The

aortic valve orientation in time was approximated to mitral valve orientation

with a phase difference. The pumping action is provided by a pusher plate

whose velocity is sinusoidal in time. The diameter of the pusher plate is 7.26

cm, and it has a stroke length of 2.28 cm. The problem is nondimensionalized

with the inflow tube diameter, which is 2.54 cm, and a unit velocity of 20 cm/sec.

In the computational study, the Reynolds number based on the unit length and

velocity is 900. Initially, the flow was started at rest, and four cycles of the

pumping action were completed using a Cray-YMP computer at NASA-Ames

Research Center. One cycle of the pusher plate's motion required 240 physical

time-steps. At each time-step, the equations were iterated until the maximum

divergence of velocity was reduced below 10-2. During most of the cycle, 10-20

subiterations were required (for more detail, see Refs. 14, 15).

In order to handle the geometric complexity and the moving boundary-pro-

blems, a zonal method and an overlapped grid-embedding scheme (Ref. 16) are

employed, respectively. In the zonal method, a complex computational domain is

divided into several simple subdomains. The overlapped grid-embedding scheme

allows subdomains to move relative to each other, and provides great flexibility

when the boundary movement creates large displacements. The computational

grid for the heart model is shown in Figure 11. Grid 1 is generated for the pusher

plate and moves with it. Grid 2 occupies the chamber and remains stationary.

Grids 3 and 5 are for the inflow and outflow tube extensions, respectively. Grid

points for the tubes and grid points for the chamber are overlapped on three

common planes. In other words, the grid points for the tubes start three stencils

inside of the chamber outer boundaries. Zonal boundary conditions are used in
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the interface boundaries. Grids 4 and 6 wrap around tilting disks, and move with

the disks. An overlapped grid-embedding scheme is employed between moving

grids and stationary grids.

The purpose of the computed results presented next is mainly to demonstrate

how CFD can be used to understand the flow in the artificial heart, and the com-

parison with experiment is qualitative. Unsteady particle traces are illustrated

in Figure 12. The particles are released near the inflow valve at the beginning of

the fourth cycle. The figure is plotted at nondimensional time t/T = 0.45 into

the period at which time the pusher plate is close to its lowest position, where

T denotes the period for the pusher plate's motion. Figure 12 shows that the

flow creates a strong vortex in the center region of the chamber. The particles

have a swirling motion against the back wall against the mitral valve opening.

The flow also separates at the connection region of the chamber and the inflow

tube. Figure 13 shows the computed velocity vectors on the horizontal midplane

at nondimensional time 0.375. At that time, the pusher plate is moving down,

and the mitral valve is open. Figure 13 also indicates the presence of strong

circulation in the chamber. However, the three-dimensional structure of the flow

cannot be seen clearly, because the vectors are plotted on a two-dimensional

plane.

The strong vortex in the center of the chamber is actually created where the

chamber and the inflow tube are connected. The vortex moves to the core of

the chamber in time. Experimental measurements by Baldwin and Tarbel (Ref.

19) are illustrated in Figure 14. Since the computational study does not include

the blood sac inside the chamber, the comparison of experimental and compu-

tational results is qualitative. In addition, the Reynolds number in the experi-

mental study is 1.7 times larger than the Reynolds number in the computational

study, because the flow is assumed to be laminar in the present computations.

The biggest discrepancy between experimental measurements and computational

results is the location of the vortex core in the chamber. In Figure 13, the vortex

is off-center in the chamber. In Figure 14, the vortex is located almost in the

center of the chamber. Another difference can be seen in the wake region of the

mitral valve. Since the Reynolds number in the computational study is lower,

the wake is not as strong as the wake in Figure 14. The Reynolds number in

the future computational study will be increased by including the turbulence

modeling in order to have a quantitative comparison between experimental and

computational results.

During the second half of the cycle time, the pusher plate moves upward, and

the outflow valve is opened. A top view of the computed velocity vectors on

the horizontal plane at t/T = 0.625 is plotted in Figure 15. Since the inflow

valve is closed, residual eddies are quite large near the disk. However, they

are quickly weakened as the pressure builds up inside the chamber. Measured

velocity vectors at t/T = 0.625 are shown in Figure 16.

Figure 17 shows additional vortex structures in the vertical plane of the chain-
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ber at nondimensional time 0.25. That vortex structure causes the swirling mo-

tion of the particles previously shown in Figure 12. The swirling flow in the

outflow tube is shown in Figure 18. The velocity vectors in the cross-sectional

plane of the outflow tube at t/T = 0.75 are plotted. The cross-sectional plane

is one nondimensional unit downstream of the tilting-disk valve, and the normal

vector of that cross section is in the positive z-direction shown in Figure 13.

4. Summary

An efficient and robust solution procedure is developed and validated for nu-

merical simulations for internal flows through artificial heart devices. The so-

lution procedure for unsteady, incompressible, viscous flow computations has

been extended with the incorporation of the grid-embedding approach. This has

been used to simulate the flow through a tilting-disk heart valve and the flow

through the Penn State artificial heart model. Separated and secondary flow

regions have been pointed out in the tilting-disk heart valve and artificial heart

flow simulations. The vortex created in the central portion of the Penn State

artificial heart provides good wall washing over the entire chamber. The present

capability of simulating complicated internal flow problems with moving bound-

aries is demonstrated. The procedure developed in this study is quite general

and is applicable to various types of artificial heart and valve geometries. It is

hoped that artificial heart researchers and designers may further benefit from

the computational ability obtained in the current work.
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Figure Captions

Figure 1. Instantaneous streamlines: Re = 600, St = 0.057. (a) t = 0.45. (b)

t = 0.55. (c) t = 0.65. (d) t= 0.75. (e) t= 0.S0. (f) t = 0.90. (g) t = 1.5.

Figure 2. Comparison of numerical results with experimental measurements

and other numerical solutions.

(a) Time-evolution of vortices center.

(b) Vortices A, B, C, and D.

Figure 3. Tilting-disk geometry showing valve opening.

Figure 4. Overlapped grids.

Figure 5. Pressure drop across tilting-disk valve versus steady-state flow rate.

Figure 6. Comparison of numerical result and experimental measurements.

Figure 7. Velocity vectors at several longitudinal stations.

Figure 8. Particle traces showing minor and major flow regions.

Figure 9. Vorticity magnitude contours.

(a) Channel surface.

(b) Outflow surface of disk.

(c) Inflow surface of disk.

Figure 10. Side view of velocity vectors on the lateral symmetry plane showing

the valve.

(a) t/T = 0.128.

(b) t/T = 0.257.

(c) t/T = 0.385.

Figure 11. Computational grid for Penn State artificial heart model showing

zonal and overlapped grid regions.

Figure 12. Unsteady particle traces at tiT = 0.45 as pusher plate nears

bottom position.

Figure 13. Velocity vectors of incoming fluid at t/T = 0.375. Top view in

horizontal planes through the center of tubes and in horizontal plane 3 mm below

top surface of chamber.

Figure 14. Experimental results at t/T = = 0.375 (Ref. 19).

Figure 15. Velocity vectors of incoming fluid at t/T = 0.625; top view in

horizontal planes through center of tubes and in horizontal plane 3 mm below

top surface of the chamber.

Figure 16. Experimental results at t/T = 0.625 (Ref. 19).

Figure 17. Velocity vectors of incoming fluid at t/T = 0.25; side view in

vertical plane through center of inflow tube.

Figure 18. Velocity vectors in the cross-sectional plane of outflow tube showing

swirling motion of the fluid: t/T = 0.75.

t NASA AMES RESEARCH CENTER, MOFFETT FIELD, CALIFORNIA 94035.
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Figure 3: Tilting disk geometry showing valve opening.
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Figure 4: Perspective view of two overlapped grids.



• Numerical Solutions

o Experiments by Yoganathan, and Corcoran, 1979

m
12.5

10.0
C_

_ 7.5

_ 5.0

I

0.0

O,O

/

0

_o.o _oo.o _o.o ,_oo.o z_o.o 3o0.o _o.o 400.o

Stead)" P!,,w P-_,e, Q (cm3/sec)

J

450.0

Figure 5: Pressure drop across the tilting disk valve versus steady-state flow rate.

Re = 5972. Steady Flow rate = 4£7 cm3/see.

• Pr.e_ent C_Iculatlon with Gr.ld Reflnenlent

Expor.lrnonts b'v" YOl[anmthsn _k Corcor'lDn

150.0

,,._ lO0.O___ _ !

_ 50.0

0.0 _ '. I

0.0 5.0 10,0 15.0 20.0 25.0 30.0

DISTANCE FROM INSIDE WALL (ram)

Figure 6: Comparison between the numerical result and the experimental measurements.



Figure 7: Velocity vectors at several longitudinal stations.
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Figure 13: Velocity vectors of incoming fluid at t/T = 0.375. Top view in horizontal planes

through the center of '_ubes and in horizontal plane 3 rain. below the top surface
of the chamber.

7igure i4: Experimental results at tilT = 0.375 by Baldwin and Tarbell (Ref. 1_).
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